Math 246B Lecture 14 Notes

Daniel Raban

February 20, 2019

1 Weierstrass's Theorem

1.1 Constructing holomorphic functions with a given zero set

Here is Weierstrass's theorem, which allows us to construct holomorphic functions with a prescribed zero set.

Theorem 1.1 (Weierstrass). Let $\Omega \subseteq \mathbb{C}$ be open, and let $A \subseteq \Omega$ be a set with no limit point in Ω . Assume that for any $a \in A$, we are given a positive integer n(a). There exists $f \in \operatorname{Hol}(\Omega)$ such that $f^{-1}(\{0\}) = A$, and the multiplicity of each $a \in A$ is n(a).

Proof. We may assume that A is infinite and write $A = \{a_k, k = 1, 2, ...\}$ with $a_k \neq a_{k'}$ if $k \neq k'$. Call $n_k := n(a_k)$. We shall try to construct f as an infinite product of the form

$$\prod_{k=1}^{\infty} (z-a_k)^{n_k} e^{g_k(z)},$$

where $g_i \in \text{Hol}(\Omega)$ are chosen to achieve convergence.

Introduce the compact exhaustion $K_j = \{z \in \mathbb{C} : |z| \leq j, \operatorname{dist}(z, \mathbb{C} \setminus \Omega) \geq 1/j\}$. For each k, we have $a_k \in K_j$ for all j large enough. Define the sequence

$$j(k) = \begin{cases} 1 & a_k \in K_1 \\ \max\{j : a_k \notin K_j\} & a_k \notin K_1 \end{cases}$$

We have $j(k) \to \infty$ as $k \to \infty$: If j(k) < M for some M, for infinitely many $k, a_k \notin K_{j(k)}$ for all large k. Then $a_k \in K_{j(k)+1} \subseteq K_M$ for infinitely many K, which cannot occur since A has no limit points in Ω .

We claim that for any k large enough, there exists $f \in \text{Hol}(\Omega)$ such that $f_k^{-1}(\{0\}) = \{a_k\}$, the multiplicity of a_k is n_k , and such that there is a holomorphic branch g_k of $\log(f_k)$ in a neighborhood of $K_{j(k)}$. We have $a_k \notin K_{j(k)}$, so $|a_k|j(k)$ or $\text{dist}(a_k, \mathbb{C} \setminus \Omega) < 1/j(k)$. We deal with each case:

- 1. $|a_k| > j(k)$: Take $f_k(z) = (z a_k)^{n_k}$ and then take a holomorphic branch L_k of $\log(z a_k)$ in $\mathbb{C} \setminus \{ta_k, t \ge 1\} \supseteq K_{j(k)}$. Then $g_k = n_k L_k$.
- 2. dist $(a_k, \mathbb{C} \setminus \Omega) < 1/j(k)$: This distance is $\int_{z \in \mathbb{C} \setminus \Omega} |a_k z|$, and pick $b_k \in \mathbb{C} \setminus \Omega$ such that dist $(a_k, \mathbb{C} \setminus \Omega) = |a_k b_k|$. This is the infimum of a continuous function over a closed set, and it goes to ∞ as $|z| \to \infty$, so the value is achieved; moreover, $b_k \in \partial \Omega$. Take

$$f_k(z) = \left(\frac{z - a_k}{z - b_k}\right)^{n_k} \in \operatorname{Hol}(\Omega).$$

Then $\{ta_k + (1-t)b_k : 0 \le t \le 1\} \cap K_{j(k)} = \emptyset$ because $dist(ta_k + (1-t)b_k, \mathbb{C} \setminus \Omega) \le t|a_k - b_k| < 1/j(k)$. Now the Möbius transformation

$$T(z) = \frac{z - a_k}{z - b_k}$$

maps $\mathbb{C} \setminus [a_k, b_k]$ to $\mathbb{C} \setminus \overline{R}_-$, and thus we can take $g_k(z) = n_k \operatorname{Log}(T_k(z))$, where this is the principal branch of T_k . So g_k is holomorphic in a neighborhood of $K_{j(k)}$.

This proves the claim.

Now any bounded component of $\mathbb{C} \setminus K_{j(k)}$ meets $\mathbb{C} \setminus \Omega$, so by Runge's theorem, for any k, there is a holomorphic function $h_k \in \text{Hol}(\Omega)$ such that $|g_k - h_k| \leq 2^{-k}$ on $K_{j(k)}$. Define $\tilde{f}_k := e^{-h_k} f_k \in \text{Hol}(\Omega)$. Then \tilde{f}_k does not vanish on $K_{j(k)}$. On $K_{j(k)}$, $\tilde{f}_k = e^{g_k - h_k}$, so (using $|e^z - 1| \leq |z|e^{|z|}$) we get $|\tilde{f}_k - 1| \leq 2^{-k}e$ on $K_{j(k)}$. If $K \subseteq \Omega$, then $K \subseteq K_{j(k)}$ for large k (as $j(k) \to \infty$ when $k \to \infty$), and this estimate shows that the infinite product

$$f = \prod_{k=1}^{\infty} f_k$$

converges locally uniformly and defines $f \in Hol(\Omega)$ which solves the problem.

1.2 Characterization of meromorphic functions

Weierstrass's theorem gives us an immediate way to characterize meromorphic functions.

Corollary 1.1. Let g be meromorphic in Ω . Then g = f/h, where $f, h \in Hol(\Omega)$.

Proof. Let $h \in \text{Hol}(\Omega)$ be such that the set of zeros of h agrees with the set of poles of g, with multiplicities. Then $f := gh \in \text{Hol}(\Omega)$.